Laser reinigings toepassingen

Introductie in laserreinigen



  
 

Hoe werkt dit ? 

De figuur links geeft het effect weer van het laserreinigen. De grijze laag (vervuilingslaag)  zal de laserenergie absorberen. Het "base material" kan hout, aluminium, staal, titanium of een composiet zijn. 

Van belang is de mate van de laser absorptie in de vervuilingslaag. Elke soort materiaal zal het laserlicht anders absorberen in functie van zijn kleur en samenstelling. De vervuiling zal de energie goed absorberen, terwijl het basis materiaal de energie voornamelijk reflecteert. 

De laser is kort gepulst, dit betekend dat de laserstraal vergelijkbaar is met kleine lichtkogeltjes, die met een frequentie van 200.000 pulsen/seconde worden afgevuurd.

Als een lichtkogel het oppervlak bereikt zijn er 2 voorname reacties mogelijk:

Dillatatie/krimp effekt

Het basismateriaal blijft koud, terwijl de vervuiling energie absorbeert en warm wordt. Het verschil in uitzetting zorgt ervoor dat de vervuilingslaag eraf krimpt.

Verdamping

Als de vervuiling zodanig veel energie absorbeert treed er verdamping op. Geen grote vlammen, enkel een lokale reactie die rook genereert welke makkelijk kan afgezogen worden. 

Bovenstaande reacties komen vaak tesamen voor. De laser is ook bruikbaar voor fotochemische afbraak van organische verbindingen. 

Voorbeeld: ontroesten

De roestkorrel is donker en heeft een andere thermische geleidbaarheid dan het basisstaal. De roestkorrel zal het laserlicht maximaal absoberen en afkrimpen  met een uitstekende reiniging tot gevolg. Alle organische  verontreinigingen zullen  mee verdampt worden.

Om te onthouden : laserlicht verwijdert zowel organische als anorganische verontreinigingen.

 

Voordelen van laserreingen ?

Reiniging met lasers maakt een geweldige opgang vanwege zijn contactloze overbrenging van energie aan het oppervlak. Verder vooral vanwege het ontbreken van een multiplicator effect van de afvalstroom. De klassieke systemen hebben grondstoffen nodig en hebben veel energie nodig om aangemaakt te worden om vervolgens ingezet te worden als chemische reinigingsoplossing of straalgrid. Daarnaast moeten ze afgevoerd en verwerkt worden.

  • Geen straalmedium alleen electriciteit
  • Basis materiaal wordt niet aangetast
  • Een absolute hogere zuiverheidsgraad wordt bereikt
  • Te integreren in productielijnen
  • Geen chemisch afval, alleen afzuiging
  • Lokaal reinigen is mogelijk
  • Geen lawaai, geen stof
  • Stabiel proces
  • Geen onderhoudskosten
  • Lage operationele kost
  • Verhoogde corrosieweerstand na laserreingen mogelijk
 
 


   

De toekomst van het laserreinigen.

Laserreinigen neemt grote stappen voorwaarts als de tendens naar nieuwe oppervlakte-eisen en milieuregels toenemen. Nieuwe automobielnormen streven naar sub-micron verwijdering van contaminanten voor allerhande componenten, dit is niet meer mogelijk met de klassieke technologie.

Met de juiste analyse van uw producieproces is een operationele kost van 1/12 t.a.v klassieke technologie een serieuze ROI hefboom.

Nieuwe productielijnen worden uitgerust met laser om een continue reiniging In-line te voorzien als verlaging van de klassieke kosten, minder onderhoud, minder uitsluizing en stilstand dan voorheen.

Nieuwe productieprocessen vragen om inline tracing en monitoring in elke stap van het proces om de kwaliteit te waarborgen. Laserreiniging kan als enige technologie zichzelf controleren.

In de toekomst zal laserreinigen een standaard techniek worden in nieuwe en oude productielijnen. P-laser concentreert zich op hoog vermogen lasers te ontwikkelen voor allerhande toepassingen mobiel als vast. 

 

 





 

The Physics: how it worksThe illustration on the left shows the effects of laser cleaning. The grey layer on top op the base material is the contamination. This layer will absorb the laser energy very well, whereas the base material (steel, aluminum, wood, plastics...) will reflect most of the energy. 

The laser is short pulsed, this means that the laser beam is comparable to small bullets of light, shooting at a frequency of around 200.000 pulses/second! 

When a bullet hits the absorbing layer, two things can happen:

Crimp effect:

The base material stays cold, while the absorbing layer heats up.The heat-expansion difference will cause the contaminant to crimp off the base material.

Evaporation:

The contaminant heats up that much, a plasma is created around the working area. This will cause evaporation.



Laser Cleaning Advantages

Cleaning with laser has gains so much interest because of the amount of advantages compared to traditional cleaning methods. 

The most popular methods of industrial cleaning known today are Chemical, Thermochemical, Thermal, Grinding and Blasting. Many cases, laser cleaning can overcome the downsides of these traditional methods and even improve the production process in general. For every application where laser cleaning is used to replace older techniques, unforeseen advantages came up. It is impossible to list everything up but these are the most common advantages of laser cleaning:

  • No medium used, only electricity
  • Base material is not damaged
  • Higher levels of  'clean' can be reached
  • Easy to integrate in a production line
  • No chemical waste
  • Local cleaning is possible
  • No noise, no dust
  • Stable process
  • Low running costs
  • Lower sensitivity to corrosion after cleaning

 

 

The Future of Laser Cleaning
Nowadays, laser cleaning is taking big leaps forward. New markets approach us every day, asking for a solution for their business. Companies are convinced laser cleaning is 'proven-technology' where an investment can easily return itself within 1 or 2 years with ease! 

New production lines are often equipped with lasers for cleaning continuously. No more block-ups, less maintenance interventions, better and consistent product quality... you name it.

In the future laser cleaning will be more and more adopted as a standard technique for optimizing new and old production lines. The market will grow significantly within 2-5 years, increasing the demand for cleaning lasers. This will get the competition going to develop higher power lasers, increasing the cleaning speed which can be reached. 



 Fig 1 paint layer correction with laser scanning.

 Fig 2 removal of KTL with robot.

 Fig 3 removal in one pass of a 420 micrometer PU coating on HST axes.

 

The Physics: how it worksThe illustration on the left shows the effects of laser cleaning. The grey layer on top op the base material is the contamination. This layer will absorb the laser energy very well, whereas the base material (steel, aluminum, wood, plastics...) will reflect most of the energy. 

The laser is short pulsed, this means that the laser beam is comparable to small bullets of light, shooting at a frequency of around 200.000 pulses/second! 

When a bullet hits the absorbing layer, two things can happen:

Crimp effect:

The base material stays cold, while the absorbing layer heats up.The heat-expansion difference will cause the contaminant to crimp off the base material.

Evaporation:

The contaminant heats up that much, a plasma is created around the working area. This will cause evaporation.



Laser Cleaning Advantages

Cleaning with laser has gains so much interest because of the amount of advantages compared to traditional cleaning methods. 

The most popular methods of industrial cleaning known today are Chemical, Thermochemical, Thermal, Grinding and Blasting. Many cases, laser cleaning can overcome the downsides of these traditional methods and even improve the production process in general. For every application where laser cleaning is used to replace older techniques, unforeseen advantages came up. It is impossible to list everything up but these are the most common advantages of laser cleaning:

  • No medium used, only electricity
  • Base material is not damaged
  • Higher levels of  'clean' can be reached
  • Easy to integrate in a production line
  • No chemical waste
  • Local cleaning is possible
  • No noise, no dust
  • Stable process
  • Low running costs
  • Lower sensitivity to corrosion after cleaning

 

 

The Future of Laser Cleaning
Nowadays, laser cleaning is taking big leaps forward. New markets approach us every day, asking for a solution for their business. Companies are convinced laser cleaning is 'proven-technology' where an investment can easily return itself within 1 or 2 years with ease! 

New production lines are often equipped with lasers for cleaning continuously. No more block-ups, less maintenance interventions, better and consistent product quality... you name it.

In the future laser cleaning will be more and more adopted as a standard technique for optimizing new and old production lines. The market will grow significantly within 2-5 years, increasing the demand for cleaning lasers. This will get the competition going to develop higher power lasers, increasing the cleaning speed which can be reached. 



 Fig 1 paint layer correction with laser scanning.

 Fig 2 removal of KTL with robot.

 Fig 3 removal in one pass of a 420 micrometer PU coating on HST axes.

 

The Physics: how it worksThe illustration on the left shows the effects of laser cleaning. The grey layer on top op the base material is the contamination. This layer will absorb the laser energy very well, whereas the base material (steel, aluminum, wood, plastics...) will reflect most of the energy. 

The laser is short pulsed, this means that the laser beam is comparable to small bullets of light, shooting at a frequency of around 200.000 pulses/second! 

When a bullet hits the absorbing layer, two things can happen:

Crimp effect:

The base material stays cold, while the absorbing layer heats up.The heat-expansion difference will cause the contaminant to crimp off the base material.

Evaporation:

The contaminant heats up that much, a plasma is created around the working area. This will cause evaporation.



Laser Cleaning Advantages

Cleaning with laser has gains so much interest because of the amount of advantages compared to traditional cleaning methods. 

The most popular methods of industrial cleaning known today are Chemical, Thermochemical, Thermal, Grinding and Blasting. Many cases, laser cleaning can overcome the downsides of these traditional methods and even improve the production process in general. For every application where laser cleaning is used to replace older techniques, unforeseen advantages came up. It is impossible to list everything up but these are the most common advantages of laser cleaning:

  • No medium used, only electricity
  • Base material is not damaged
  • Higher levels of  'clean' can be reached
  • Easy to integrate in a production line
  • No chemical waste
  • Local cleaning is possible
  • No noise, no dust
  • Stable process
  • Low running costs
  • Lower sensitivity to corrosion after cleaning

 

 

The Future of Laser Cleaning
Nowadays, laser cleaning is taking big leaps forward. New markets approach us every day, asking for a solution for their business. Companies are convinced laser cleaning is 'proven-technology' where an investment can easily return itself within 1 or 2 years with ease! 

New production lines are often equipped with lasers for cleaning continuously. No more block-ups, less maintenance interventions, better and consistent product quality... you name it.

In the future laser cleaning will be more and more adopted as a standard technique for optimizing new and old production lines. The market will grow significantly within 2-5 years, increasing the demand for cleaning lasers. This will get the competition going to develop higher power lasers, increasing the cleaning speed which can be reached. 



 Fig 1 paint layer correction with laser scanning.

 Fig 2 removal of KTL with robot.

 Fig 3 removal in one pass of a 420 micrometer PU coating on HST axes.



terug